Kinematics ${ }^{\circ}$ Dynamics of Linkages Lecture 2: Kinematics Fundamentals

Mechanical Systems

- Classified by their Mobility (M) or degrees of freedom (DOF)
- DIF: the number of independent parameters needed to uniquely define their pasitions in space at any instant with respect to a
 selected frame of reference (the parameters are not unique)

Kinematic Principles

- A rigid bady in a plane has 3 DOF
- 2 lengths I 1 angle
- A rigid bady in 3D space has 6 DIF
- 3 lengths 83 angles

- A rigid bady = kinematic link
- Kinematic badies are rigid \& massless

Types of Mation

- Translation
- The linear position of a bady changes with respect to a fixed frame
- Rotation
- The angular orientation of a body changes about a fixed frame of reference
- Complex (General Mation)
- Simultaneous combination of translation and rotation motions

An example of rotation. Both the worm and the worm gear are rotating on their own axis.

Linkages

- Basic building blacks for all mechanisms that are made up of links and joints
- Link = a rigid body possessing at least 2 nodes
- Nodes = points far attachment to other links

https://us.elkasuspension.com/wp-content/uploads/sites/5/2016/02/ATV-Linkage_2.jpg

Types of Links

Binary

A link with 2 nodes

Ternary
A link with 3 nodes

Quaternary
A link with 4 nodes

Joints

- Connections between 2 or mare links at their nodes
- Allow far a constrained motion between the connected links
- Alsa called "kinematic pairs"
- Classified in different ways

Joint Classification

1. by the number of DCF allowed at the joint
2. by the type of contact between the elements

- point, line or surface

3. by the type of physical closure of the joint

- force ar form clased

4. by the number of links joined at the joint

- order of the joint

Classification of Joints by their DDF $1 / 2$

Revolute (R) joint-1DOE

Prismatic (P) joint-1DOF

Helical (H) joint- $1 D O E$

Cylindric (C) joint-2DOF

Spherical (S) oint-3DOF

Planar (F) joint-3DOF

Classification of Joints by their DCF 2/2

- Full Joint: Ratating pin ar translating slider (I DAF)

Rotating full pin (R) joint (form closed)

Translating full slider (P) joint (form closed)

- Half Joint: Roll-slide joint (2 DIF)

Link against plane (force closed)

Pin in slot (form closed)

Drder of a full joint

- Dne less than the number of links joined

First order pin joint one DOF
(two links joined)

Definitions

- Kinematic Chain
- An assemblage of links and joints, interconnected in a way to provide a controlled output mation in response to a supplied mation
- Mechanism
- A kinematic chain in which at least one link has been grounded, or attached to the frame of reference
- Machine
- A collection of mechanisms arranged to transmit farces and da work

Determining Mobility

- Need ta know:
- \# of links
- \# af joints
- Interaction among them
- Closed mechanism chain
- M = I or less DDF
- Dpen mechanism chain
- M = Mare than I DIF

(d) Open mechanism chain

(b) Closed mechanism chain

Gruebler Condition

- Any link in a plane has 3 DIF
- therefare, a system of L unconnected links in the same plane will have 3 LDF
- When 2 links are connected by a full joint
- 2 DOF will be removed (constrained)
- When 2 links are connected by a half joint
- I DCF will be removed (constrained)
- When a link is grounded (attached to the reference plane)
- 3 DOF will be removed (constrained)

Example

a) 2 LDCF

c) ZL-I DOF
b) $2 \mathrm{~L}-2 \mathrm{DOF}$

Gruebler's Equation

- $M=3 L-2 J-3[$
- Where:
- L = \# of links
- $\downarrow=$ \# of joints
- G = \# af grounded links
- In a real mechanism, even if more than I link is grounded, the net effect will be to create one larger ground link, as there is only one ground plane
- Therefore,
- $\mathrm{G}=1$
- Eruebler's equation becomes:
- $M=3(L-I)-2 \downarrow$

Kutzbach's Equation

- Takes into account the value of all joints
- Full and half
- $M=3(L-I)-2 \mathrm{~J} \mid-J 2$
- Where:
- L = \# of links
- ال = \# af full joints
- J2 = \# of half joints

Example

M=3(L-1)-2J

$$
\begin{gathered}
L=6, \quad J=7.5 \\
D O F=0
\end{gathered}
$$

Ground (link 1)

(b) Linkage with full half, and multiple joints

Example

M=3(L-1)-2J

$$
\mathcal{L}=8, \quad I=10
$$
$$
D O E=1
$$

Paradoxes to Gruebler's Equation

Tat Thedequntavituoarso

(b) The Equinter with por 1
disadreos why wieblerequation. die tolniquegeonety
(20) Rodimexingers withever

- dis daneesw th Grieble toqual

Full joint pure rolling no slip

MEE341 - Lecture 2: Kinematics Fundamentals
Slide 20 of 18
RLIAU

